亚里斯多德全集-第129部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
于同一主体,但其中有一个必定属于每个事物;当C和D
具有同样的联系,A伴随C而出现,并且不能转换时,那
么,D伴随B 而出现并且这种联系也不是可转换的。A和
D 可能属于同一主体,但B和C不能。
首先,D伴随B出现,这从下面的证明中可以清楚地
看到。因为在C和D中有一个必然属于每一个事物,C不
可能属于B所属于的事物,因为C包含着A,A和B不能
同时都属于同一主体。所以,很显然,D将伴随B出现。
再者,C与A的联系不能转换,要么C要么D属于一切事
物。所以A和D可以属于同一对象。但是B和C则不可
能,因为A为C所包含,由此便产生了一个不可能的结
果。B与D的联系显然也是不能转换的,因为D和A可能
同时属于同一主体。
有时,在这样的词项排列中,我们也会发生错误,因为
我们没有正确地选择某一个必定属于每个事物的相反者。例
如,如果A和B不能同时属于同一主体;但一个不属于,
另一个则必然属于。再者,C和D具有相同的联系;A属
于C所属于的一切事物。因此可以推出,D属于日所必然
属于的事物。但这是假的。设定下是A和B的否定,G是
C和D的否定。则要么A要么F必定属于每一事物。因为
肯定和否定也必定这样属于。再者,C或G必定如此属
于,因为它们是肯定和否定。根据假设,A属于C所属于
的一切,因而G属于F所属于的一切事物。再者,F和B
中有一个属于一切事物,G和D也是如此,由于G伴随F
而出现,所以B也伴随D而出现。我们已经知道这一
点。所以,如果A伴随C而出现,则B也是D的一个结
果。但这是虚假的,因为在如此构成的词项中,可获得相反
的结果联系。原因在于,A或F属于一切事物可能不是必
然的。F或B也不必然如此,因为F不是A的否定。善的
否定是非善;非善既不与善等同,也不与非善等同。同样的
论断也适用于C和D。在这两种情况下,两种否定已被确
定。
The CHM file was converted to HTM by Trial version of ChmD epiler 。 Download ChmDec ompiler at: zipghost
北极星书库…yl…gjl…qfx…2
前分析篇
第二卷
【1】 我们已经解释清楚,三段论有多少个格,它所由产生的前提的性质和数量以及决定它的条件;再者,当一个人要反驳或确立一个命题时必须考虑什么样的属性,怎么样用每种给定的探讨方法开始研究所给予的任务;还有,我们可以通过什么途径获得适合于每种情况的本原。
有些三段论是全称的,有些三段论是特称的。全称三段论总可以得出多个推论;肯定的特称三段论可以得出多个推论,但否定的特称三段论则仅能得出一个结论。其他所有前提都可以换位,而特称否定判断则不行;结论就是陈述某个主项的属性。因此,所有其他三段论都可以推出多个结论,例如,如果A已被证明属于所有或某个B,B必定也属于某个A;如果A不属于任何B,那么,B也不属于任何A(这个结论是与前者不相同的)。但是,如果A不属于有些B,却不能推出B也不属于有些A,因为它可能属于所有A。
这一原因对所有三段论都是共同的,无论它们是全称的还是特称的;关于全称三段论也可以作出另外的解释。同一三段论适用于一切从属于中词或结论的词项,如果这些词项被放在中词的位置上和在结论中的话,例如,如果AB是通过C而达到的结论,那么A必定述说一切从属于B或C的词项。因为如果D整个被包含在B之中,B整个被包含在A之中,则D也被包含在A之中。再者,如果E整个被包含在C之中,C整个被包含在A之中,那么E也被包含在A之中。如果三段论是否定的。情况也相同。可是,在第二格中,推论只适用于从属于结论的词项。例如,如果A不属于任何B,但属于所有C,则结论是B不属于任何C。然后,如果D从属于C,那么很显然B不属于D。它不属于从属于A的词项,这不是通过三段论证明的,尽管如果E从属于A,B就不属于E。但是,B不属于任何C,是通过三段论证明的,而日不属于A却是未经证明而断定的。所以,并不是通过三段论推出,B不属于E。
对特称三段论而言,有关从属于结论的词项没有必然的推论(因为当这个前提被设定为是特称时,三段论不能产生),但是存在着一个对于从属于中词的一切词项都适用的推论,只是它不是通过三段论获得的;例如,如果我们断定A属于所有B,B属于某个C。因为没有关于从属于C的词项的推论,但关于从属于B却有一个推论,只是不是通过已确立的三段论而达到的。其他格的情况也相同。不存在关于从属于结论的词项的推论,但存在关于从属于中同的推论,只是不是通过三段论获得的;正如在全称三段论中,从属于中词的词项是从一个未经证明的前提中获得证明一样。这样,要么原则在那种情况下不适用,要么它在这里又适用。
【2】 三段论所由得出的前提,可能两者皆真,可能两者皆假,也可能一个真,另一个假。结论也必然是真的或假的。从真实的前提中不能得出虚假的结论,但从虚假的前提中却可能得出一个真实的结论,只有当结论不是关于原因而是关于事实时才是真实的。从虚假的前提中不能推出关于原因的结论,其中理由待以后再予以解释。
首先;从真实的前提中不可能得出一个虚假的结论,这通过下面的论证可以看得很清楚。如果当A存在时,B必定存在,那么如果B不存在时,则A就必定不存在。因而,如果A是真实的,B也必定是真实的;否则就会推出同一件事物同时既是又不是,而这是不可能的(不要以为因为A已经被设定为一个单一的词项,就可以从任何一个论断中得出一个必然的推断。因为这是不可能的,必然的推断是结论,而得出结论的最基本的条件是三个词项和两个相联系的前提)。如果A属于B所属于的一切事物,B属于C所属于的一切事物,都是真的,则A必然属于C所属于的一切事物,这不可能是假的;否则,同一属性将同时既属于又不属于。所以,尽管A被确定为是一个单一的词项,它也代表两个前提问的联系,否定三段论的情况也相同;因为不可能从真实的前提中证明一个虚假的结论。
从虚假的前提中可以得出一个真实的结论,不仅当两个前提都虚假时可以,而且只有一个前提虚假时也可以。但不是哪一个虚假都无所谓,而只能是第二个为虚假,即如果它在其中被断定的形式中整个是假的;否则,虚假可能属于任何一个前提。
让A属于C的全部,但不属于任何B,让B不属于任何C,这是可能的。例如:动物不属于任何石头,石头不属于任何人。然后,如果设定A属于所有B,B属于所有C,则A也属于所有C,这样从两个虚假的前提中得出的结论就是真实的(因为每个人都是动物)。否定三段论的情况也相同,因为A和B,都可能不属于任何C,但是A可能属于所有B,例如,设定与上述相同的词项,以“人”作为中词,动物、人都不属于任何石头,但动物属于每个人。如果设定属于一切的不属于任何一个,不属于任何一个的属于一切,虽然两个前提都是假的,但从它们中得出的结论都是真实的。如果设定两个前提部分是假的,则会获得同样的证明。
如果设定只有一个前提是虚假的,当第一个前提(如AB)整个是虚假的时,结论就不是真实的。但当BC整个是虚假的时,结论可能是真实的。我所说的“整个虚假”是指相反的论断,即设定不属于任何一个的属于一切,或属于一切的不属于任何一个。让A不属于任何B,让B属于所有C,如果我设定的前提BC是真实的,前提AB整个是虚假的,即A属于所有B,则结论不可能是真实的。因为根据假设,A不属于任何C,如果A不属于B所属的一切,B属于所有C。同样,如果A属于所有B,B属于所有C,已经设定前提BC是真实的,AB整个是虚假的,即A不属于B所属于的一切事物,则结论是虚假的;如果A属于B所属于的任何事物,B属于一切C,则A属于所有C。很显然,当第一个前提(无论它是肯定的还是否定的)被设定为是整个虚假的,另一个前提是真实的时,则从中得出的结论不是真实的。但如果所设定的前提不是整个虚假时,则结论是真实的。让A属于所有C,属于某个B,B属于所有C,例如,动物属于每只天鹅,属于某个白的东西,白的属于每只天鹅,如果假定A属于所有B,B属于所有C,则A将属于所有C,这是真实的。因为每只天鹅都是一个动物。假如AB是否定的,则情况也同样;因为A可能属于某个B,但不属于任何C,B属于所有C,例如,动物属于某种白的东西,但不属于任何雪,但白的东西属于所有雪。假定如果A不属于任何B,B属于所有C,则A不属于任何C,但如果前提AB被假定为整个是真的,BC整个是假的,则三段论是真实的。因为没有什么阻止A属于所有B,属于所有C,而B不属于任何C,正如同一个种之所有的属不互相从属一样,因为动物既属于马,也属于人,而马不属于任何人。因此,如果假定A属于所有B,B属于所有C,则结论就是真实的,尽管前提BC是整个虚假的。
当前提AB是否定的时,情况亦相同。因为A可能不属于任何B,也不属于任何C,B也不属于任何C,正如一个种不属于另一个种的属一样。动物既不属于音乐,也不属于医学,音乐也不属于医学。所以,如果假定A不属于任何B,B属于所有C,则结论就是真实的。
如果前提BC并不是整个而只是部分地虚假,则结论也会是真实的。没有什么阻止A属于所有B,属于所有C,而B只属于某个C。例如,种既属于属,也属于属差,动物属于每个人,属于所有在陆地上行走的东西,但人只属于某种而不是所有在陆地上行走的东西。所以,如果假定A属于所有B,B属于所有C,则A属于所有C,它是真实的。
如果前提AB是否定的,则情况亦同样。A可能不属于任何B,不属于任何C,但B可能属于某个C,譬如说,一个种不属于另一个种的属与属差,动物既不属于实践智慧“也不属于理论智慧,而实践智慧属于某种有理论智慧的东西。所以,假定A不属于任何B,B属于所有C,则A不属于任何C,这是真实的。
至于特称三段论,当大前提整个是虚假的,另一个前提是真实的时,结论是真实的。当大前提部分虚假,另一个是真实时,结论是真实的。当大前提真实,另一个部分虚假时,结论是真实的,当两个前提都是虚假时,结论也是真实的。因为,(1)没有什么阻止A不属于任何B,但属于某个C,而B属于某个C。例如,动物不属于任何雪,但属于某种白的东西,雪属于某种白的东西。如果规定“雪”是中词,“动物”是大词,假定A属于整个B,B属于某个C,AB整个是虚假的,但BC是真实的,则结论是真实的。当前提AB是否定的时,情况也同样。因为A可能属于整个B,不属于有些C,但B属于有些C。例如,“动物”属于每个人,但不是某些“白的东西”的一个后件,人属于某种白的东西,所以,如果规定“人”是中词,假定A不属于任何