亚里斯多德全集-第74部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
遍”都必然属于它们的主体。“就其自身”而言与“作为自身”相等同,例如,“点”和“直”就其自身而言属于“线”,因为它们也是作为线而属于它的;“其内角之和等于两直角”是作为三角形而属于三角形的,因为三角形就其自身而言就是其内角之和等于两直角。只有当一个属性被证明是属于那个主体的例证,并且是在最初意义上属于那个主体时,它才是普遍属性。例如,“其内角之和等于两直角”并不是普遍地属于“形状”(诚然,我们可以便某一形状的内角之和等于两直角,但却不能证明任一形状的内角和等于两直角,一个人也不能运用任一形状来证明。例如,正方形是一个形状,但它的内角却并不是等于两直角)。再者,任一等腰三角形都有等于两直角之和的内角,但它不是满足这一要求的最初形状,而是三角形先于它。这样,能被证明在任何情况中都在最初意义上满足包含两直角之和的内角这一条件并且也满足任何其他条件的那个事物,就是普遍属性在最初意义上所属于的那个主体;对这个谓项普遍真实地属于其主体的证明在它们之间建立了一种就其自身而言的联系,反之,与其他谓项所建立的联系在某种意义上却不是就其自身而言的。再者,“其内角之和等于两直角”也不是等腰三角形的普遍属性;它具有更广泛的范围。
【 5 】 我们必须注意到,有一个错误是经常发生的。我们所努力证明的属性,在我们看来在某种意义上是首要的和普遍的,却被证明不属于首要的和普遍的。我们之所以犯这一错误,要么是由于我们不能发现与个体相分离的更高的东西,要么这样的东西存在,但它应用于不同属的对象时却没有名字,要么证明的主体碰巧是作为另一事物一个部分的整体。尽管证明适用于包含在它之中的所有特殊事物可以作为它的全体的谓项,但证明仍然不能首要地和普遍地适用于它。当我说证明首要地和普遍地适用于一个主体时,我的意思是说它本身首先是属于那主体的。
如果要证明垂直于同一条线的两条线从不相交,就可以设定垂线的这种性质是证明的适当主体,因为它适用于所有垂线。但实际并非如此,因为这个结果的推得,并不是因为这些角以这种特殊方式相等,而是因为它们完全相等。
再者,如果等腰三角形是唯一的三角形,那么,关于它包含着等于两直角之和的内角的证明就会被认为是作为等腰三角形而属于它的。
此外,“比例交替”的定律可被认为属于作为数的数,也同样属于线、体和时间阶段,一一就像它曾经被分别证明过的那样,虽然可以借助一个证明论证它们全体。但是由于缺少表示数、线、时间、体的共同性质的单一名词,它们在属上各不相同,所以它们被分别处理。但现在这条法则已被证明是普遍的,因为这种属性不是作为线或者作为数,而是作为拥有这种特殊性质而属于它们。它们被设定普遍拥有这种性质。如果一个人,无论他是否用一种证明,分别证明了每类三角形一一等边的、不等边的、等腰的——的内角和等于两直角之和,那么他除了在诡辩的意义上说而外,自然不知道一个三角形的内角和等于两直角之和,或者说它是三角形的普遍属性,即使除了这些而外再无别的三角形。因为他不知道这种属性是作为三角形而属于一个三角形,也不知道它属于每一个三角形,即使除这些三角形以外别无其他种类,他不知道它是专门属于每个三角形的,即使不存在他不知道拥有它的三角形。
那么,什么时候我们并非普遍地知道,以及什么时候我们无条件地知道呢?显然,如果三角形在每一个特例上都与“等边三角形”相等同,那么我们就具有无条件的知识。但如果它不是相同而是不同的,这种属性是作为三角形属于等边三角形的,那么我们的知识就不是普遍的。我们必然会问,这属性是作为三角形还是作为等腰三角形属于它的主体?什么时候它首要地属于它的主体?它能普遍地证明属于的主体是什么?显然,它作为属差而属于的第一主体是可去掉的。例如,具有等于两直角之和的角这一属性属于“铜制的等腰三角形”,当“铜”与“等腰”被去掉时,它仍然属于。但如果你将“形状”或“界限”去掉则不然。确实不然,但这些并不是一旦去掉就会使属性不能属于的首要属差。那么,什么是首要的呢?如果它是三角形,便会因为它是三角形而使这种属性属于一切其他主体,这种属性能够普遍地被证明为是属于三角形的。
【 6 】如果证明知识出自必然的本原(因为我们所知道的东西不能变成别种样子),依据自身的属性对它们的主体来说是必然的(因为它们有一些寓于它们主体的本质中,而另一些则让它们所表述的主体寓于它们自己的本质中,在后面这一类中,一对相反属性中的一个必定属于),那么很显然,证明三段论所从出的前提必定具有这种性质,因为每个属性要么这样属于,要么在偶然的意义上属于,偶然的不是必然的。
我们要么以这种方式论证,要么设定“证明是必然的”这样一个原则,即如果一个事物获得了证明,那它就不可能是别种样子,只能是它自身。因此,三段论的前提必定具有必然性。从真实的前提可以得出一个结论来而无需证明,然而从必然的前提不经证明却不可能得出任何结论,因为必然性就是证明。
证明由之进展的前提是必然的。这一论点的证据可在下面的事实中找到。即当我们反对那些认为他们在证明的人时,我们就说“它不是必然的”,如果我们认为那个事实或者是无条件的,或者是为了论证可以变成别种样子。
从这些论证中可以看出,认为只要前提是被普遍接受和真实的,一个人就获得了正确的本原这种想法是愚蠢的,正如智者们认为知识即是有知识一样。本原并不是被普遍接受的或者不被普遍接受的,而是首先真实于证明所涉及的种,并不是每个真实的事实都为既定的种所特有的。
三段论必须奠基于必然的前提之上,这从下面的论证中也可以明显地看出,如果一个人尽管有着可以采用的证明,却不能解释事实的原因,那么,他就不具有知识。如果我们肯定这样一个三段论,当 A 作为谓项必然属于 C 的时候,结论由此得以证明的中词 B 却并不与其他项处在一种必然的联系中, 那么,他就不知道原因。因为这个结论并不依靠中词,中词可以不是真实的,但结论却是必然的。
再者,如若一个人现在所不知道的东西,尽管他得到过解释,并且他自己和事实都没有变化,他也没有忘记,那么他从前对它也是不知道的。如果中词不是必然的,那它就可能消逝,在那种情况下,尽管他自己及事实依然是不变的,他能解释它,他也不知道事实,因而他以前也不知道它。即使中词实际上并没有消逝,而只是可能消逝,那么结论也会是或然的、偶然的,在这样的条件下,知识是不可能的。
当结论是必然的时,它由之得到证明的中词并非自身是必然的。因为从不必然的前提也有可能得到必然的结论,正如从不真实的前提也有可能达到真实的结论一样。但如果中词是必然的,那么结论也是必然的,正如从真实的前提中得出的结论总是真实的一样。让 A 作为 B 的必然谓项, B 作为 C 的必然谓项,那么 A 属于 C 的结论也是必然的。如果结论不是必然的,那么中词也不是必然的。假定 A 不必然属于 C 却必然属于 B , B 必然属于 C ,那么 A 也必然属于 C ,但这不是原来的设定。
因为如果我们对某一命题有证明知识,谓项必然属于主项,那么很明显,证明所依存的中词必定也是必然的。否则,我们既不能把结论也不能把它的原因认作是必然的。我们要么认为我们知道(尽管我们不知道,即把不必然的东西确定为必然),要么不认为我们知道,无论我们是通过间接的词项知道事实还是直接知道原因,情况都一样。
按照我们所下的定义,不依据自身的属性是不拥有证明知识的,因为它不可能对结论作一个必然的证明。偶然的属性可能不属于主体,而我所谈论的属性正归属于这种类型。可能会有人问,要是结论不是必然的,我们为什么要提出某个确定的前提以便达到某个结论呢?一个人同样可以提出任何偶然的前提,然后陈述结论。对此的回答是,我们应当提出明确的问题,不是因为回答影响结论的必然性,而是因为在陈述它们时,我们的论敌必定陈述结论,并且真实地陈述它,如果属性是真实地属于主体的话。
因为在每个种里,只有依据自身所属的那个特殊种的属性才必然地属于它,所以,很显然,科学证明关于依据自身的属性并且以它们为始点。偶然属性不是必然的,所以我们并不必然知道为什么结论是真实的,即使属性总是属于主体,而不是依据自身而属于,那也不行,如在凭借标示的证明中那样。因为我们不知道作为依据自身的事实是依据自身的,也不知道它的为什么。知道一件事物的为什么是通过它的原因而知道的,因而,中词必定由于自身属于小词,大词必定由于自身属于中词。
【 7 】 从一个种跨到另一个种不可能证明一个事实,例如通过算术证明几何命题。证明有三个因素:( 1 )有待于证明的结论(它是就自身而归属于某个种的属性);( 2 )公理(公理是证明的基础);( 3 )载体性的种及其规定及依据自身的属性由证明揭示。如果种互不相同,如算术和几何,即使证明的基础是同一的,算术的证明也不可能适用于量值的属性,除非量值是数目。在某些情况下转变是可能的。其原因将在下文解释。算术证明总是拥有作为证明对象的种,其他科学亦相同。这样,如果证明是可转换的,种必定是同一的,要么是纯粹的,要么是在某些方面同一。在其他方式上,这显然是不可能的。端词和中词必定属于同一个种:如果联系不是出于自身的,那它必定是偶然的。这就是我们不能通过几何学证明相反者为同一学科所研究,甚至不能证明两个立方体之积是一个立方体的原因。一门科学的命题不能由另一门科学来证明,除非存在着这样一种联系,即一门科学的命题从属于另一门科学的命题。例如,光学的命题从属于几何学,和声的命题从属于算术。几何学也不能决定是否一个不是作为线的给定的属性属于线,并且从它们自己特殊的原则中引申出来,例如,直线是否是所有线中最美的,它是否是曲线的对立面,这些属性适用于线不是由于它们特殊的种,而是由于它们是为其他某个种所共有的性质。
【 8 】 显然,如果三段论的前提是普遍的,那么,这类证明一一总体意义上的证明——的结论必定是永恒的。如果联系不是永恒的,那就没有总体意义上的证明或知识。而只是在偶然的意义上而言,即属性不是普遍地而是在特定的时间和条件下属于主体。要是如此,小前提必定是非永恒的、非普遍的。它是非永恒的,因为这样结论只能是非永恒的;它是非普遍的,因为结论只是在某些情况下真实,某些情况下不真实,