九味书屋 > 现代都市电子书 > 万维宇宙全书第三部分 >

第4部分

万维宇宙全书第三部分-第4部分

小说: 万维宇宙全书第三部分 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



作为参照系,它没有方向。
  当我们地球静止时意味什么呢?
  单元宇宙起源于奇点,不同与宇宙大爆炸理论的是,奇点不仅体积为零,质量也为零。这一观念与量子理论吻合,承认爆炸理论的奇点质量无穷大,这本身就是掘墓自坟,因为黑洞的质量大到连光都跑不出来,那么比黑洞大无穷倍的奇点又如何能爆炸呢?单元宇宙对奇点同时存在膨胀、回归的神奇特征,它本身可以解释宇宙背景辐射问题,不需要用爆炸温度来解释。
  我们对奇点的漂移形成时空概念,时空物质就是奇点漂移后的产物,用漂移这个名称是因为云寒认同量子理论多重宇宙论,时空漂移是指单元宇宙对万维宇宙的漂移。
  真空中的时间之箭就是物体对奇点运动的时间钟。生命之钟也是奇点控制的钟,运动时钟膨胀、长度收缩就是指相对静止参照系而出现得观察效应。当我们把地球对奇点的运动看成静止的时候,奇点与地球之间的连接线就是地球的静止参照系。
  因此,单元宇宙参照系是以奇点为原点的参照系,它适应于整个单元宇宙的任何物体,是最基准的宇宙参照系。
  那么我们对奇点的漂移速度是多少?
  答案是光速C,正是因为它是光速C,所以产生铁笼效应,宇宙基准参照系的筛选是造成我们观察的世界存在光速极限的原因,是它决定光速的速度极限而不是光速决定它。
  如同光速是有限的一样,地球对奇点的漂移速度决定了大于光速远离的星系我们无法观察,而不是这类星系不存在。宇宙不能存在有太遥远的星系,仅是因为不能违反人类的伟大假设——光速最大,这显然是很荒唐的逻辑。
  真相是单元宇宙存在非常遥远的星系,因为受到奇点速度的控制,我们无法看到。
  人类科技发展历史上有多少次是出现自然违反了人类相对真理的故事,每一次都是人类修改理论,获得新生后更快地发展,而不是修改宇宙的自然规律来适应人类理论的推论需要。
  奇点漂移速度控制我们的观察空间,根据哈勃定律,离我们L处的天体对应的远离速度为u是个常量,u=HL(H=80㎞﹒s…1﹒Mpc…1)这是个普适性的公式。运用哈勃定律C=HL
  L=C/H=3 108m/s 80 103m﹒s…1﹒Mpc…1(Mpc=106 3。08568 1016m)
  L=1。157 1026m=1。223 1010光年
  结论:考虑到哈勃常数的不确定性,这个距离十分吻合现有的宇宙直径,即奇点大约位于我们100多亿光年处。
  2.漂移原理
  单元宇宙的时空漂移导致十分复杂的运动,我们首先研究没有外界干扰简单相对论效应。
  奇点假设是一个点,根据宇宙本元论,它是一个静元宇宙,当物体从奇点爆炸膨胀后,形成更大的空间,等同于形成更大的静元宇宙。
  漂移原理:任何物体之间如果静止不运动,那么等同于处于同一个静元宇宙,同时同方向对奇点进行漂游运动。
  如果有两个物体相互运动,那么认为这两个物体仍然是以各自的速度X和速度Y对奇点进行漂移,只是这两个物体的漂移运动方向不一样。物体对奇点的漂移速度和漂移方向不同,将导致物体之间出现相互运动。
  结论:单元宇宙物体对奇点的漂移形成的参照系,为物体自身的基准漂移参照系,所谓相互运动是建立在奇点漂移观察的基础上。
  3.静止漂移
  假设存在两个物体:A和B,它们对奇点的漂游速度都是C,而且对奇点的漂移方向都相同,那么它们之间的速度如何确定呢?
  以A点代表地球,我们的静止就等于承认地球是静止的,即地球对奇点的漂移为惯性不变,以A0和A1的连线对应的参照系为基准漂移参照系。
  以B点代表地球,我们的静止就等于承认地球是静止的,即地球对奇点的漂移为惯性不变,以B0和B1的连线对应的参照系为基准漂移参照系。
  以A点观察,在静元宇宙P0时,A和B的距离为A0B0,在静元宇宙时P1时,A和B的距离为A1B1,由于B和A两个物体漂移速度和方向都相同,因此A0B0 =A1B1,即B是静止的。
  以B点观察,在静元宇宙P0时,B和A的距离为B0A0,在静元宇宙时P1时,B和A的距离为B1A1,由于B和A两个物体漂移速度和方向都相同,因此A0B0 =A1 B1,即A是静止的。
  这就是物体静止的漂移原理。如图五:单元宇宙从静元宇宙P0运动到静元宇宙P1(本图为四维时空漂移图,P0 、P1平面代表的是三维立体空间)。 因为A和B的奇点漂移速度一致,漂移方向一致,它们是处于相对静止状态,所以导致观察到的静元宇宙是同一系列的P三维空间,只是它们处于万维宇宙的位置不同。
  图五:静止漂移图
  4.运动漂移
  假设存在两个物体:A和B,它们对奇点的漂游速度都是C,而且对奇点的漂移方向不一样,那么它们之间的速度如何确定。
  为了便于阐述运动漂游理论,分两种情况论述:第一种是A和B同源,即原先为一个相连物体的分裂运动;第二种是A和B不同源,即原先为两个不相连物体的运动。
  第一种是A和B同源时:
  以A点观察,在静元宇宙PA0时,A0就是B0,因此A和B的距离为0,在静元宇宙时PA1时,A和B的距离在万维宇宙中的距离为A1B1,但是这个距离是无法观察到的,即A对B的观察必须依托自己认定的静元宇宙PA1,所以A观察B的时候看到的是B1′,这样A观察的B的速度是A1B1′这个距离的变化速度。这个速度有两种计算方法:
  以A的时间漂移为TA,A和B的运动方向的角度为θ,那么
  A0A1=CTA
  A0B1 =A0A1= CTA
  A0B2= A0B1/ cosθ= CTA/ cosθ
  B1B2= A0B2 … A0B1= CTA/ cosθ… CTA
  B1′B2= B1B2 sinθ=(CTA/ cosθ… CTA)sinθ
  A1B2 = A0B2 sinθ= CTAsinθ/ cosθ
  A1B1′= A1B2…B1′B2= CTAsinθ/ cosθ…(CTA/ cosθ… CTA)sinθ= CTAsinθ
  A1B1′为距离,根据牛顿速度公式u=S/T= Csinθ
  即以A0和A1的连线对应的参照系为基准漂移参照系,A观察到B的速度为u=Csinθ。上述的论证比较复杂,实际还有更简单的计算方法。
  以B的时间漂移为TB,A和B的运动方向的角度为θ,那么
  A0B2= CTB
  A1B2 = A0B2 sinθ= CTBsinθ
  A1B2为延伸漂游距离,根据牛顿速度公式u=S/T= Csinθ
  即这个结论是一样的。
  同样以B点观察,以B0和B1的连线对应的参照系为基准漂移参照系。B观察到A的速度为u=Csinθ
  图六:同源运动漂移图
  图六左边为:A和B同源时候,A观察的运动漂移图;右边为:A和B同源时候,B观察的运动漂移图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间)。
  第二种是A和B不同源时:
  A和B位于静元宇宙PA0时,A的位置为A0,B的位置为B0,A和B之间的位置为A0B0。
  实际观察和同源一样,只是原先的距离不是0,等于将B点移动到B′就能得出与同源一样的结论,即u=S/T= Csinθ。
  图七:不同源运动漂移图
  图七左边为:A和B不同源时候,A观察的运动漂移图;右边为:A和B不同源时候,B观察的运动漂移图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间)。
  结论:任何物体的运动可以看成同源运动,物体之间真实的运动是处于万维宇宙之间的运动,物体观察其他物体的运动速度时存在观察失真,导致观察的速度与漂移方向有关,这个速度取决物体自身的漂移速度,在物体对奇点漂移速度为C的时候,速度为Csinθ,这个速度是相互的速度,即A观察B的速度和B观察A的速度一样。
  5.长度缩短
  假设B物体内含的空间有一个物体,它的长度为LB,那么在A的基准漂移参照系中,LA就不等于LB长度,LA=LBcosθ,根据三角函数原理,cosθ=(1…sin2θ)1/2,得出:LA= LB 。
  假设A物体内含的空间有一个物体,它的长度为LA,那么在B的基准漂移参照系中,LB就不等于LA长度,LB=LAcosθ,同样得出:
  LB= LA 。
  这就是漂移理论得出的长度缩短结论。
  图八左边为:A观察B物体的长度缩短图;右边为:B观察A物体的长度缩短图A和B不同源时候,B观察的运动漂移图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间,LA和LB是虚拟长度,实际上只是为了理解画的,真正的物体长度应该处于平面内)。
  图八:长度收缩图
  需要指出的是:
  本文认为长度缩短的公式与狭义相对论一样,但是长度方向不同。本文的长度是沿着奇点漂移运动的长度,不是其他方向的长度,只有与自身的漂游运动方向一致的长度,才能出现缩短现象,其他方向必须要折算成奇点运动方向,如果与奇点运动方向垂直,那么就不能出现缩短。
  这与狭义相对论所说的运动方向不一样,狭义相对论所说的运动方向长度收缩是推论失误,它本身与视觉旋转理论存在矛盾。
  结论:通常物体的运动速度很小,观察很近才出现这样的模糊理解,真实的长度缩短就是与自身奇点漂移运动方向的长度缩短。
  6.时间膨胀
  根据宇宙量子论,时间是单元宇宙物体的空间变动率,即A0A1和 B0B1代表A和B的静元物体空间变动数,C为空间变动速度。
  从A的基准漂移参照系观察,物体A是从A0点运动到A1,它经历的时间为TA,TA=A0A1/C。
  从B的基准漂移参照系观察,物体B是从B0点运动到B1,它经历的时间为TB,TB= B0B1/C。
  由于A和B是同源漂移,A0A1=B0B1,A和B对奇点的漂移速度都是C,因此,TA=TB。
  虽然就整个单元宇宙看TA=TB,但是就A和B各自的基准漂移参照系来看,时间是不一样的。
  从A的基准漂移参照系观察B,它观察到B的空间变动速度不C,是C的映射速度,VB=Ccosθ。
  因此测量的时间TB=A0A1/VB=A0A1/Ccosθ=TA/ cosθ=TA/ 。
  从B的基准漂移参照系观察A,它观察到A的空间变动速度不C,是C的映射速度,VA=Ccosθ。
  因此测量的时间TA=B0B1/VB=B0B1/Ccosθ=TB/ cosθ=TB/ 。
  当物体A和B之间的速度趋于光速的时候,那么VA和VB就趋于无穷小,相对的时间也趋于无穷大。这就是时间膨胀的漂游本元。
  图九:时间膨胀图
  图九左边为:A的基准漂移参照系观察B的时间膨胀图,右边为:B的基准漂移参照系观察A的时间膨胀图(本图为四维时空漂移图,PA0 、PA1、 PB0 、PB1平面代表的是三维立体空间,VA和VB是观察方向导致的静元宇宙漂移速度)。
  结论:时间膨胀是对称的,是观察过程中的映射反映,实际上物体自身的时间并没有变,所谓时间膨胀是相对于观察主体出现的观察效应。
  7。 质量膨胀
  关于质量膨胀原理,非常简单,根据牛顿定律:F=ma=ms/t,转换成Ft=ms
  本论中S可以理解为长度L,即Ft=mL,由于观察中运动的长度发生缩短,即L= L0 。那么在Ft一定

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的