九味书屋 > 言情浪漫电子书 > 科学史及其与哲学和宗教的关系 >

第49部分

科学史及其与哲学和宗教的关系-第49部分

小说: 科学史及其与哲学和宗教的关系 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  c=kE=E/R, 

  式内k是一个常数,可名为传导率,而其倒数1/k或R,称为电阻。R只随导体的性质、温度与大小而异,它与导体的长度成正比,而与其横剖面的面积成反比。这后一事实表明电流是在导体的全部质量中均匀地通过。后来发现,在很高远的交流电的情形下,还须加一些修改。 

  经安培与欧姆的努力之后,电流的问题已经到了新物理学的重要阶段,因为适当的基本量已经选出,并有了确定的意义,因而给数学上的发展奠定了坚固的基础。 

  光的波动说 

  十九世纪初年,还有另外一个古老的观念复活起来和确立起来,这便是光的波动说。我们说过:光的波动说在十七世纪只有胡克等人模糊主张过,后来惠更斯才给予它一个比较确定的形式。牛顿根据两个理由加以挥斥。第一,它不能解释物影,因为牛顿以为如果光是波动的话,光波也如声波那样,会绕过阻碍之物。第二,冰洲石的双折射现象说明光线在不同的边上有不同的性质,而在传播方向上颤动的光波不能有这样的差异。托马斯·杨(ThomasYoung,1773-1829年)与弗雷内尔(Augustin Jean Fresnel,1788-1827年)对这个学说赋予近代形式,而克服了这两个困难。不过有一件事是值得回忆的:牛顿以为薄膜的颜色说明光线里的微粒使以太中产生附从波。这个学说与现今用来解释电子性质的理论,惊人地相似。 

  杨使一束极狭窄的白光通过屏上的两个针孔,再把一个屏放在第一个屏后面。当穿过两个针孔的光线在第二屏上互相重叠时,就有一串颜色鲜亮的光带出现。这些光带是由于从两个针孔光源而来的同类光波互相干涉而形成的。如果一个光波到达第二屏所走的路程和另一光波的路程的相差数恰为波长的一半,则这一光波的峰与另一光波的谷就恰好相遇,结果就产生黑暗。如果两个光波前进的路程恰恰相等,两者的波峰就恰好相遇,光亮也就加倍。我们实际所看见的光是由白光除掉一个波长的光所留下的多色光。如果我们不用多色混成的白光,而用单色光作实验,则所得的将是明暗相间而非彩色的光带。 

  由所用的仪器的尺寸以及光带的宽度,我们可以计算出各种单色光的波长。这些波长经证明是非常之短,其数量级为一时的五万分之一,或一毫米的二千分之一,和牛顿认为易反射和易透射的间歇长度恰相符合。由此可见,在光线的路径中,一般障碍物的大小比光波的长度大得很多,而且数学上的研究证明,如果我们假定一个前进的波阵面分解为无数同心圈,都环绕着与人目最接近的波阵面上的一点,那么,除了挨近那一点的同心圈之外,其余的同心圈必因干涉而相消,因而我们眼睛所看见的只有沿着直线而来的光。这样,光差不多只沿直线进行,遇着障碍物而弯曲的现象只限于微小的衍射效应。 

  牛顿的第二困难为弗雷内尔所克服。胡克偶尔提到光波的颤动,可能与光线的方向相正交,弗雷内尔指出这个提示说明一线光在各方向上可能有不同的性质。如果我们看看一个前进光的波阵面,它的线性颤动非上下的即左右的。这样的线颤动应产生所谓平面偏振光。如果一块晶体在一位置上只能让一个方向的颤动通过,第二块同样的晶体沿着晶轴旋转90度之后,必将通过第一晶体而来的光完全遮断。这正是光线通过冰晶石的现象。 

  弗雷内尔利用数学将光的波动说发展到很圆满的境界。虽然还有一些困难,但大体说来,他的完善的学说与观测到的事实异常符合。他和他以后的人如格林、麦克卡拉(MacCullagh)柯西(Cauchy)、斯托克斯(Stokes)、格莱兹布鲁克(Glazebrook)等人经历一个世纪,才把古典的光的波动说确立起来。 

  如果光波是与其前进的方向成正交的,则其媒质必须具有使这样的波能在其中传播的结构。气体与液体都不能具有这种结构。因此,如果光是机械式的波动,则传光的以太必定有与固体类似的性质:即它必定带有刚性。这就是把以太看做是有弹性的固体的许多学说的开端。怎样才能把光的媒质所必需的这种性质和行星的运动没有遇到可观的阻力的事实调和起来呢?十九世纪头七十年的许多聪明物理学家为此绞尽了脑汁。为了解释这种必要的刚性,后来甚至有人设想以太具有回转仪式的旋转运动。 

  正如爱因斯坦所指出的,光的波动说的成功,在牛顿物理学中打开了第一道缺口,虽然当时没人知道这个事实。牛顿把光看做是在空间中运行的微粒的学说,和他的别的哲学很相配合,可是这些微粒为什么只以一个不变的速度运动,很难了解。但等到人们开始把光看做是波动的时候,再要相信一切实在的东西都是由在绝对空间里运动的微粒所组成的,就已经不可能了。以太是为了保存机械观点而臆造出来的,只要可以把光看做是在类似刚体的煤质中传播的机械波动,以太就完成了这个任务,可是,如果假定以太无所不在,它已经在某种意义上与空间本身合而为一了。但法拉第指出空间也有电和磁的性质,到麦克斯韦证明光是电磁波时,以太就不必一定是机械的了。 

  光的波动说揭开了现今所谓场物理学的第一章。由法拉第和麦克斯韦的工作写成第二章,把光与电磁联系起来。在第三章里,爱因斯坦用几何学来解释万有引力。也许有一天,万有引力可能和光与电磁波在更大的综合里联系起来。爱丁顿就一直在作这样的努力。 

  电磁感应 

  由静电的感应而生的静电荷以及磁石对于软铁的类似作用,使早期实验者想到利用伏特电池发出的电流也许可得同样的效果。例如法拉第就用两根绝缘线按螺旋的形式缠绕在同一根圆木筒上,但是,当他使强电流不断地通过一根螺旋线时,他在另一螺旋线里的电流计上,没有发现有什么偏转。 

  他的第一个成功的实验,在电学史上打开了一个新纪元。1831年11月24日,他向皇家学会这样描写这次实验 

  把一根203呎长的铜丝缠在一个大木块上,再把一根长203呎的同样的钢丝缠绕在前一线圈每转的中间,两线间用绝缘线隔开,不让金属有一点接触。一根螺旋线上连接有一个电流计,另一根螺旋线则连接在一套电池组上,这电池组有100对极版,每版四时见方,而且是用双层铜版制造的,充分地充了电。当电路刚接通时,电流计上发生突然的极微小的效应;当电路忽断的时候,也发生同样的微弱效应。但当伏特电流不断地通过一根螺旋线时,电流计上没有什么表现,而在另一螺旋线上也没有类似感应的效应,虽然整个螺旋线的发热以及碳极上的放电,证明电池组的活动力是很大的。 

  用120对极版的电池组来重做这个实验,也未发现有别的效应,但从这两次实验,我们查明了一个事实:当电路忽通时,电流计指针的微小偏转常循一个方向;而当电路忽断时,同样的微小偏转则循另一方向。 

  到现在为止,我用磁石所得的结果,使我相信通过一根导线的电池电流。实际上在另一导线上因感应而产生了同样的电流,但它只出现于一瞬间。它更带有普通来顿瓶的电震产生的电浪的性质,而不象从伏特电池组而来的电流;所以它能使一根钢针磁化,而很难影响电流计。 

  这个预期的结果竟得到了证明。因为用缠绕在玻璃管上的中立的小螺旋线来代替电流计,又在这个螺旋线里安装一根钢针,再如前把感应线圈和电池组连结起来,在电路未断以前将钢针取出,我们发现它已经磁化了。 

  如先通了电,然后再把一根不曾磁化的钢针安放在小螺旋线内,最后再把电路切断,我们发现钢针的磁化度表面上和以前一样,但是它的两极却与以前相反。 

  用现今的灵敏电流计,我们很容易重做法拉第的实验。只须用一个伏特电池作为原电流,而使原电路与副电路作相对的移动,或用一个永磁铁和一个与电流计相联的线圈作相对移动,都可以证明有同样的暂时电流的发生。法拉第电磁感应的发现,为后来工业的大发展奠定了基础。差不多一切实用上重要的电力机器,都是根据感应电流的原理制成的。 

  电磁力场 

  安培发现电磁定律,用数学公式把它表达出来以后,就感到满足,没有再去探索这种力靠什么机制传播了。但承继他的法拉第,不是数学家,对于中介空间或电磁力场的物理性质与状态特别感到兴趣。如果把一块纸版放在磁捧之上,再拿一些铁屑散布在纸版上,这些铁屑将集合成许多线,表明磁力是沿这些线而起作用的。法拉第想象这样的力线或力管将磁极或电荷连结起来,真的存在于磁场或电场之中,它们也许是极化了的质点所组成的链。如果它们象橡皮条那样,处在紧张状态之下,向纵的方向拉长,而向横的方向压缩,那么它们会在煤质中伸展出去,而将磁极或电荷向一起拉拢,这样可以解释吸引的现象。不论实际是否这样,用法拉第的力线,来表示绝缘的媒质或电场中的应力与应变的现象,实在是一个便利的方法。 

  法拉第又从别的方面研究了电介质的问题。他发现在导体周围的空气为虫胶或硫一类绝缘体所代替时,导体的静电容量,即在一定电位或电压下它能负荷的电量,便有增加;这个增加的比例他叫做那个绝缘体的电容率。 

  法拉第的见解超过了他的时代,而且他用来表达这些见解的术语,也不是当时所熟习的。三十年后,麦克斯韦将这些见解翻译成数学的公式,并发展为电磁波的理论时,它们的重要性才被人认识(在英国立刻就被人认识,在其他国家比较慢)。这样,法拉第就奠定了实用电学的三大部门,即电化学、电磁感应与电磁波的基础。而且他坚决主张电磁力场具有极大重要性,这也是现代场物理学理论有关电的方面的历史起点。 

  电磁单位 

  我们得感谢两位德国的数学物理学家高斯(1777-1855年)与韦伯(W.E.Weber,1804-1891年),因为他们发明了一套科学的磁与电的单位。这种单位不是根据和它们同类的量任意制定的,而是根据长度、质量与时间三种基本单位而制定的。 

  1839年,高斯发表了他的《按照距离平方反比而吸引的力的一般理论》一书。电荷、磁极以及万有引力都适合这个关系。这样,就可以给单位强度的电荷或磁极下这样的定义:同相等的类似电荷或磁极在空气中相距一单位(1厘米),而以一单位的力(1达因)对该电荷或磁极加以排斥的电荷或磁极。如果用另一介质来代替空气,这个力就按一定的比例减少,他用k来代表电力,u代表磁力。k就是法拉第的电容率,在这里成为介质常数,u这个量后来叫做介质的磁导率。在这个基础上高斯建立了一个宏伟的数学演绎的大厦。 

  安培与韦伯由实验证明带电流的线圈,与同大小同形式的磁铁的作用相同,一个圆圈电流与一个在正交向上磁化的圆盘等效,所以一面是指北极,另一面是指南极的。这样单位电流可定义为和单

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的