阿西莫夫最新科学指南-下 [美]-第10部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
1个氨基同后面的
1个羧基缩合,这样便成了蚕丝分子:
……a—c、a—c、a—c……
本世纪
30年代,杜邦公司的化学家卡罗瑟斯对一些含有氨基
和羧基的分子进行了研究,希望借此找到一种较好的方法,将它们
缩合成具有大环结构的分子。(这类分子对于香料制造业是很重
要的。)与他的愿望相反,他发现这些分子缩合成了长链分子。
卡罗瑟斯早已预料到可能会出现长链分子,因此没有错过这
一机会。他立即对此作了进一步的研究,最后用己二酸和己撑二
胺制成了纤维。己二酸分子含有两个羧基,中间被
4个碳原子隔
开,因此可以用
c————c表示。己撑二胺由两个氨基构成,
中间被
6个碳原子隔开,因此可写为:
a —————— a。当卡
罗瑟斯将这两种物质混在一起时,它们就缩合成具有下列结构的
聚合物:……
a —————— a。 c ———— c。 a —————
第十一章 分 子
第十一章 分 子
— a。c ———— c。 a —————— a……可以看出,用点标出
的缩合部位具有与蚕丝相同的构型“c。a”。
最初生产的纤维并不是很好,主要是强度太差。卡罗瑟斯断
定,问题就出在缩合过程中所生成的水上。水的存在产生了一个
相反的作用——水解反应,它使聚合反应不能持续很久。卡罗瑟
斯找到了一种补救办法,即让聚合反应在低压下进行,这样水就会
蒸发并很容易被清除掉(在邻近反应液体上方斜放一块冷却的玻
璃板,水蒸气就会凝结在上面并自行流走,这种装置叫做分子蒸馏
器)。这样,聚合反应就能不断地进行下去,并形成很长的直链。
1935年,卡罗瑟斯终于为合成理想的纤维奠定了基础。
将由己二酸和己撑二胺缩合而成的聚合物熔化,再通过许多
小孔挤压出来,然后再经过拉伸,使纤维平行地排列起来,并成为
晶束似的纤维束。这样就得到了一种与蚕丝相似的带有光泽的细
丝,它可以织成像丝绸一样轻柔美观、甚至比丝绸还要结实的织
品。用这种方法生产的第一批完全合成的纤维叫做尼龙。然而,
卡罗瑟斯未能看到他的发现所结出的硕果,他于
1937年就去世
了。
杜邦公司于
1938年宣布合成纤维问世,并于
1939年开始进
行商业性生产。在第二次世界大战期间,美国陆军部队收购了全
部尼龙产品,用以制造降落伞和百余种其他军需品。战后,尼龙在
制袜业上完全取代了蚕丝,因此,妇女的长袜现在叫做尼龙袜。
尼龙的合成为许多其他合成纤维的生产开辟了道路。丙烯
睛,或称为乙烯基氰化物(
CH2=CHCN),也可以聚合成与聚乙烯
类似的长链,所不同的是,与每个单元中第二个碳原子相连的是氰
基(在这里它是完全无毒的)。这种产品叫做奥纶,1950年投入使
用。如果再添加上氯乙烯,则最终的长链既含有氯原子,又含有氰
基,这就是氯丙纶(达耐尔)。如果通过使用醋酸乙烯(
CH2=
阿西莫夫最新科学指南
阿西莫夫最新科学指南
CHOOCCH3)来添加醋酸根,则产品就是醋丙纶(阿克利纶)。
英国于
1941年制造出了聚酯纤维。这种纤维是由一个单体
的羟基同另一个单体的羟基缩合而成的长链。这种产物就是通常
的那种由碳原子构成的长链,只是每隔一定的距离插入
1个氧原
子。这种产品在英国叫做涤纶,在美国则叫做大可纶。
这些新型合成纤维的防水性能比大多数天然纤维好,而且不
怕潮湿,不易沾污,不遭虫蛀。某些合成纤维不会起皱,可用来纺
织成“耐洗耐磨”的织品。
合成橡胶
如果有人告诉你,人类使用橡胶轮子的历史不过一百来年,你
会感到非常吃惊。在过去的几千年间,人们所坐的车使用的一直
是木制轮子,或者再在轮子周围加上金属轮辋。在古德伊尔发明
了实用的硫化橡胶之后,许多人都曾想到,应该用橡胶代替金属来
包裹车轮。1845年,英国工程师
R。 W。汤姆森出了个好主意,他
在车轮周围套上一个合适的充气橡胶管,并获得了这项设备的专
利。到了
1890年,轮胎被正式用在自行车上;到了
1895年,被用
在各种老式汽车上。
令人惊奇的是,尽管橡胶是一种柔软而易破损的物质,但却比
木头或金属更加耐磨。橡胶的耐用、减震等性能,加上充气轮胎的
巧妙设计,使乘车的人觉得比以往任何时候都更加舒适。
随着汽车数量的大量增加,用于制造轮胎的橡胶的需求量也
变成了天文数字。在最近的半个世纪内,全世界的橡胶产量增长
了
42倍。只要我告诉你这样一个事实,你就可想象今天用于制造
第十一章 分 子
第十一章 分 子
轮胎的橡胶的数量:仅在美国,每年在公路上磨损掉的橡胶就不下
20万吨,尽管每辆汽车磨损掉的橡胶的数量是相当少的。
橡胶需求量的不断增加,给许多国家的战略物资的储备带来
了一定程度的危机。随着战争的机械化,军队和军需物资都开始
用装有橡胶轮胎的车辆来运输。然而,那些最有可能参加“文明”
战争的“文明”国家,却又都远离惟一能够大量供应橡胶的马来半
岛(马来半岛并不是橡胶的原产地,这里的橡胶树是从巴西移植来
的,但却生长得非常好,而原产地巴西的橡胶产量却逐年下降)。
美国的橡胶供应在它开始参加第二次世界大战的初期便被切断,
那时日本已经侵占了马来西亚。但美国在这方面早有戒备,因此,
甚至在日本偷袭珍珠港之前,战时实行的第一种定量配给物资就
是橡胶轮胎。
甚至在机械化刚刚起步的第一次世界大战中,德国就曾因为
协约国的海军切断了橡胶供应而运转不灵。
那时已经有理由考虑制造合成橡胶的可能性。这类合成橡胶
的天然原料自然是天然橡胶的结构单元——异戊二烯。早在
1880年,化学家们就发现,异戊二烯放置过久就会变软发黏,经酸
化处理后则会变成类似橡胶的物质。德皇威廉二世曾让人用这种
物质制成皇家汽车的轮胎,借以炫耀德国化学方面的高超技艺。
然而,用异戊二烯作为合成橡胶的原料,有两个困难:第一,异
戊二烯的主要来源正是橡胶本身;第二,异戊二烯在聚合时往往是
毫无规律地排列起来。在橡胶长链中,所有的异戊二烯单元都朝
向同一方向:……uuuuuuuuu……而在固塔坡胶长链中,它们则是
严格地按照一正一反的方向排列的:……
ununununun……然而,
如果在实验室中以通常的条件使异戊二烯聚合,则
u和
n就会毫
无规律地混合在一起,形成一种既不是橡胶也不是固塔坡胶的物
质。由于这种物质缺少橡胶的弹性和柔性,所以不能用来制造汽
阿西莫夫最新科学指南
阿西莫夫最新科学指南
车轮胎(仅用于国事活动的皇家汽车当然是个例外)。
后来,一些与
1953年齐格勒在制取聚乙烯时使用过的催化剂
类似的催化剂,终于使人们有可能将异戊二烯聚合成与天然橡胶
几乎完全相同的产品。不过当时已经研制出许多种具有实用价值
的、化学性质与天然橡胶极不相同的合成橡胶。
人们自然是首先用一些既与异戊二烯相似而又容易获得的化
合物来制造聚合物。例如,在第一次世界大战期间,迫于橡胶匮
乏,德国人采用了二甲基丁二烯:
CH2 CC CH2
CH3 CH3
二甲基丁二烯与异戊二烯的不同之处在于,前者的
4碳链的
中间两个碳原子各连接
1个甲基(
CH3),而后者只有
1个碳原子
与甲基相连。由二甲基丁二烯聚合而成的化合物称为甲基橡胶,
这种橡胶可以大量生产,而且价格低廉。在第一次世界大战期间,
德国大约生产了
2 500吨甲基橡胶。尽管这种橡胶的耐压性能不
理想,但它毕竟是第一种具有实用价值的合成橡胶。
大约在
1930年,德国和苏联都采取了新的方针,利用根本不
带甲基的丁二烯作为单体:
CH2 CH CH CH2
这两个国家以金属钠作为催化剂,合成了一种叫做丁钠橡胶
的聚合物。
作为一种合成橡胶,丁钠橡胶对于应付橡胶匾乏而言还算是
令人满意的。添加其他单体(它们在长链中与丁二烯相间地排列
起来)可以改善丁钠橡胶的性能。最成功的添加物是苯乙烯,这是
一种与乙烯相似的化合物,但其中的
1个碳原子连接着
1个苯环。
这种产品叫做丁苯橡胶,性质与天然橡胶极其相似。事实上,在第
第十一章 分 子
第十一章 分 子
二次世界大战期间,德国军队就是因为有丁苯橡胶,橡胶供应才没
有出现严重短缺现象。苏联也曾用同样的方法向自己的军队提供
橡胶。丁苯橡胶的原料可由煤或石油获得。
美国以商业规模来开发合成橡胶开始得较晚,因为在
1941年
之前,它从未感受到橡胶短缺的威协。但是,在珍珠港事件之后,
美国便开始全力以赴地发展合成橡胶事业。它首先生产的是丁钠
橡胶和氯丁橡胶。后者是由氯丁二烯聚合而成的:
CH2 C CH CH2
Cl
可以看出,这个分子很像异戊二烯,所不同的只是氯原子代替
了甲基。
连接在聚合物长链上的氯原子使氯丁橡胶具有天然橡胶所不
具备的一些抗腐蚀性能。例如,它对于汽油之类的有机溶剂具有
较高的抗腐蚀性能,远不像天然橡胶那样容易软化和膨胀。因此,
像导油软管这样的用场,氯丁橡胶实际上比天然橡胶更为适宜。
氯丁橡胶首次清楚地表明,正如在许多其他领域一样,在合成橡胶
领域,试管中的产物并不一定只能充当天然物质的代用品,它的性
能能够比天然物质更好。
现在,人们已在生产多种化学结构与天然橡胶迥然不同但弹
性与之相似的无定形聚合物,它们具有人们所需要的一系列优良
性能。由于这类聚合物实际上并不是橡胶,所以它们被称之为弹
料(弹性聚合物)。
第一种不像橡胶的弹料在
1918年制成,这就是聚硫橡胶。它
的分子是由碳原子对和四硫原子团相间排列而构成的长链。由于
在制备聚硫橡胶时会产生难闻的气味,所以它曾长期被搁置一旁,
但是,后来它还是被投入了商业性生产。
阿西莫夫最新科学指南
阿西莫夫最新科学指南
弹料还可以由丙烯单体、氟化碳和硅酮来合成。在这个领域,
正如人们所接触的几乎所有领域一样,有机化学家们犹如艺术大
师,利用已有的材料创造出各种新型物质,并创造出比天然物质更
好的物质。
(程席法 译)
第十二章 蛋白质
第十二章 蛋白质
第十二章 蛋 白 质
氨 基 酸
在研究生命物质的初期,化学家们就发现了一类性质奇特的
物质。在加热时,这类物质由液态变为固态,而不是由固态变为液
态。蛋清、奶里面的酪蛋白和血液里的球蛋白,就是呈现这种特性
的物质。1777年,法国化学家麦夸尔把所有加热后凝固的物质归
为特殊的