九味书屋 > 文学经管电子书 > 物理世界奇遇记 >

第6部分

物理世界奇遇记-第6部分

小说: 物理世界奇遇记 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



他想了一会儿,然后耸耸肩膀。
  “这没多大关系。我要说的是,由于光速是有限的,你所看
见的东西便变形了。实际上,你在相对论王国里所看到的,应该
是一辆似乎倒转过来的自行车。”
  “倒转过来!”汤普金斯先生叫了起来。
  “是的,情形正好是这样。那辆自行车看起来会像是倒转过
来,而不是变扁。只有在你得到这种不完善的观察结果——比方
说是你拍下的照片上的数据,并且充分考虑到到达照片上不同点
的光会有不同的传播时间,再去进行计算时(注意,我说的是计
算,而不是看)——只有到这个时候,你才能得出结论说,为了
得到这张照片上的图像,自行车的长度必定是缩短了,或者说它
变扁了。”
  “你又来啦,完全是学院式的鸡蛋里挑骨头!”慕德插嘴说。
  “鸡蛋里挑骨头!”教授发火了,“完全没有的事嘛……”
  “得,我该回房间去了。我得去拿我的写生簿。”她声明说,
“就让你们两人去讨论吧!午饭见!”
  慕德走后,汤普金斯先生发表评论说:“我想,她大概很喜
欢学画。”
  “学画?”教授亲切地看了他一眼,“我可不能让她知道你
这样说她。慕德是个美术家——一个专业的美术家。她已经颇有
些名气了。你知道,并不是人人都能在证券大街的美术馆办个人
作品回顾展的呀。上个月的《泰晤士报》就有一篇关于那个展览
会的侧面报道。”
  “真的,”汤普金斯先生喊道,“你一定很为她而自豪吧?”
  “的确是这样。一切都变得很好,非常好——最后。”
  “最后?你指的是什么?”
  “没什么,不过,这种转变正好是我原来不想让她干的事。
有一个时期,她是准备成为一个物理学家的。她很出色,在学院
里,她的数学和物理学都是班上第一。可是后来,她突然把它们
全都放弃了。就是这样……”他的声音低了下来。
  教授定了定神,接着往下说:“不过,正像我说过的,她已
经有了成就,她也很快乐。那么:我还想要什么呢?”他透过餐
厅的窗子往外看着。“愿意同我在一起吗?我们可以在他们全都
出去以前,抢占两张帆布靠椅,然后……”他四面看了看,确信
慕德不在旁边以后,他用策划阴谋者的口气说,“然后,我们就
可以专门谈个痛快了。”
  于是,他们走到海滩上,找了一个清静的地方坐下。
  “好了,”教授开始说了,“让我们谈谈弯曲空间吧。
  “为了简单起见,我们就拿个表面作为例子吧!让我们想象,
壳牌先生——你知道,他拥有许许多多加油站——决定查一查,
看看他的加油站在某一个国家里,就说是美国吧,是不是到处分
布得很均匀。为了这样做,他给他设在这个国家中部(我想,人
们一般都把堪萨斯市看做美国的中心)的办事处下了一道命令,
要它计算出离这个城市1000公里以内、200公里以内、300公里以
内加油站的数量。他从上学的时候就记住,圆的面积同半径的平
方成正比,所以,他预料在均匀分布的情况下,这样计算出的加
油站数目应该像数列1,4,9,16,……那样增加。 但是,当报
告送上来的时候,他却极为惊讶地看到,加油站实际数目的增长
要慢得多,我们就说它是按数列1,3。8,8。5,15。0, …增长吧!
‘这是怎么搞的,’他喊起来了,‘我在美国的经理不懂得他们
的业务。把加油站都集中在堪萨斯市附近,这算是什么了不起的
想法呢?’可是,他这个结论作得对头吗?”
  
  “对头吗?”汤普金斯先生重复了一遍,他正在想别的事哩。
  “不对头的,”教授严肃地说,“他忘了,地球的表面不是
平面,而是一个球面,而在球面上,某一半径的面积随半径的增
大,要比在平面上慢一些。你真的看不出这一点吗?好吧,你拿
个球,自己好好试试看。比方说,如果你正好站在北极,那么,
半径等于经线的一半的圆就是赤道,它所包含的面积就是北半球。
把半径再增加1倍,你所得到的就是整个地球的面积了;这时,
面积只增大1倍,而不像在平面上那样增大到4倍。现在你明白
了吗?”
  “明白了,”汤普金斯先生说,尽力使自己集中注意力,“
这是正曲率还是负曲率?”
  “这就是人们所说的正曲率,正像你从这个球体的例子所看
到的,它所对应的是具有确定面积的有限表面的情况。具有负曲
率的表面,可以用马鞍作为例子。”
  “用马鞍?”汤普金斯先生又重复了一遍。
  “是的,用马鞍,或者,也可以用地面上两座山之间的鞍形
山口作例子。设想有个植物学家,住在一间建在这种鞍形山口的
茅屋里,他对茅屋周围松树的生长密度很感兴趣。如果他计算生
长在离茅屋33米、66米、99米……范围内的松树的数目,他就会
发现,松树的数目比按距离平方规律增长得快,问题在于,在鞍
形面上,某一半径所包含的面积,要比在平面上大一些。人们把
这样的表面称为具有负曲率的表面。如果你想把一个鞍形面铺开
在平面上,有些地方就得折叠起来;但是,在把球面铺成平面时,
如果它没有弹性,你就得把它撕开一些裂口才行。”
  
  “我明白了,”汤普金斯先生说,“你的意思是说,鞍形面
虽然也是弯曲的,但它却是无限的。”
  “正是这样,”教授表示同意,“鞍形面在各个方向都向无
限大展延,它永远不会闭合。当然啦,在我所举的鞍形山口的例
子里,只要你走出山区,表面就不再具有负曲率了,因为这时你
已经进入按正曲率弯曲的地面了。但是,你当然能够想象到,一
个处处保持负曲率的表面会是什么样的。”
  “不过,这怎样用到三维的弯曲空间中去呢?”
  “办法完全相同。假设天体在整个空间中均匀地分布——我
的意思是说,任何两个相邻天体之间的距离永远相同。再假定你
想计算出离你不同距离内的天体的数目。如果这个数目同距离的
立方成比例地增大,这个空间就是平坦的空间;如果增大的速度
比距离的立方慢一些(或快一些),那么,这个空间就具有正曲
率(或负曲率)。”
  “这么说来,在空间具有正曲率的场合下,在一定距离内的
体积就小一些,而在负曲率的场合下,体积就大一些了?”汤普
金斯先生惊讶地说。
  “正是这样,”教授笑了,“我看,现在你已经正确地理解
我的话了。为了研究我们所居住的大宇宙的曲率是正是负,恰恰
就需要这样去计算遥远天体的数目。你大概也听说过有一些巨大
的星云,它们在空间中均匀地散布着,一直到离我们几十亿光年
之远的大星云,我们都还能看得见。在这样研究宇宙的曲率时,
它们是非常方便的天体。”
  “这实在太出人意料了。”汤普金斯先生嘟哝着。
  “是的,”教授同意他的说法,“但是还有更离奇的呢。如
果曲率是负的,我们就应该期望三维空间会朝着所有方向无穷尽
地向外扩展,就像二维的鞍形曲面那样。从另一方面说,如果曲
率是正的,那就意味着三维空间是有限的,并且是封闭的。”
  “这是什么意思呢?”
  “什么意思?”教授想了一会儿,“这个意思就是说,如果
你乘坐宇宙飞船从地球的北极竖直地朝上飞去,并且一直沿着直
线保持同样的方向不变,那么,最后你就会从相反的方向回到地
球,在地球的南极着陆。”
  “但是,这是不可能的呀!”汤普金斯先生喊了起来。
  “从前人们不是也认为环球旅行是不可能的吗?过去,人们
认为地球是平坦的,所以,如果一个探险家一直准确无误地朝西
走去,人们就相信他会离出发点越来越远;可是,后来却发现他
从东方回到了他的出发点。这不是一样的道理吗?!还有……”
  “别再还有啦!”汤普金斯先生想阻止教授再说下去——他
的脑袋瓜已经在旋转了。
  “我们的宇宙正在膨胀着,”教授不理睬他的反对,继续往
下说,“我对你说过的那些星系和星系团正在彼此退行,拉大距
离。星系离我们越远,它们飞散的速度越快。这都是大爆炸产生
的结果。对了,你听说过大爆炸吗?”
  汤普金斯先生点点头,心里却在想慕德到底上哪里去了。
  “好的,”他的同伴接着说,“宇宙就是这样开始的。最初,
就是从一个点发生的大爆炸产生了宇宙万物。在大爆炸以前,什
么东西都没有:没有空间,没有时间,绝对没有一切。大爆炸是
宇宙万物的开始。后来,各个星系就一直在彼此飞散。不过,由
于它们之间互相施加着万有引力,它们飞散的速度正在逐渐减慢。
这里有一个同我们生死攸关的问题,那就是:各个星系飞散的速
度究竟是快到能够逃脱万有引力的吸引呢(如果能够,宇宙就将
永无止境地膨胀下去),还是它们有朝一日会停止飞散,然后又
被万有引力拉回到一起。如果它们被拉回来,那就会发生一次大
挤压。”
  “在发生大挤压以后,会发生什么事呢?”汤普金斯先生问
道,他的兴趣被这个问题重新唤醒了。
  “那可能就是世界的未日——宇宙不复存在。不过,也可能
发生反复——一种大反复。也就是说,宇宙可能是脉动:先是膨
胀,接着是收缩,然后又是另一个膨胀和收缩的循环,并且就这
样一直反复循环下去,直到永远。”
  “那么,宇宙到底属于哪一种?”汤普金斯先生问道,“它
是会永无止境地膨胀下去,还是有朝一日会变成大挤压呢?”
  “我也不敢说。这取决于宇宙中物质的数量——究竟有多少
物质在产生那种使膨胀速度减慢的万有引力。科学家们好像已经
很巧妙地把它测算出来了。物质的平均密度接近于所谓的临界值,
即把两种不同场面分隔开的极限值。但是我们还很难说它到底有
多大,因为我们现在已经知道,宇宙中的绝大多数物质都不会发
光,它们不像束缚在恒星上的物质那样闪闪发光。所以,我们把
它们叫做暗物质。由于它们是暗的,要想探测到它们便困难得多
了。不过我们已经知道,它们至少占宇宙中全部物质的99%,而
且正是它们使得总密度接近于临界值。”
  “大糟糕了,”汤普金斯先生评论说,“我非常想知道宇宙
要走的是哪条路。可是,密度的问题却弄得这么难以判定,真是
太倒霉了!”
  “哦——你说得也对也不对。正是宇宙的密度(在所有可以
采取的可能值当中)偏偏如此接近于临界值这个事实,使人们猜
想到这其中必然有某种更深层的原因。许多人认为,在宇宙的初
期,有某种起作用的机制自动引导密度采取那个特殊值。换句话
说,密度如此接近于临界值绝非巧合,这不是由于某种偶然事件
而发生的,实际上,宇宙的密度就必须具有临界值。事实上,我
们以为现在我们已经知道那个机制是什么了,它被称为暴胀理论
……

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的