006第三章 膨胀的宇宙-第2部分
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
一个假设。
大约同时,在附近的普林斯顿的两位美国物理学家,罗伯特·狄克和詹姆士·皮帕
尔斯也对微波感兴趣。他们正在研究乔治·伽莫夫(曾为亚历山大·弗利德曼的学生)
的一个见解:早期的宇宙必须是非常密集的、白热的。狄克和皮帕尔斯认为,我们仍然
能看到早期宇宙的白热,这是因为光是从它的非常远的部分来,刚好现在才到达我们这
儿。然而,宇宙的膨胀使得这光被如此厉害地红移,以至于现在只能作为微波辐射被我
们所看到。正当狄克和皮帕尔斯准备寻找这辐射时,彭齐亚斯和威尔逊听到了他们所进
行的工作,并意识到,自己已经找到了它。为此,彭齐亚斯和威尔逊被授予1978年的诺
贝尔奖(狄克和皮帕尔斯看来有点难过,更别提伽莫夫了!)
现在初看起来,关于宇宙在任何方向看起来都一样的所有证据似乎暗示,我们在宇
宙的位置有点特殊。特别是,如果我们看到所有其他的星系都远离我们而去,那似乎我
们必须在宇宙的中心。然而,还存在另外的解释:从任何其他星系上看宇宙,在任何方
向上也都一样。我们知道,这正是弗利德曼的第二个假设。我们没有任何科学的证据去
相信或反驳这个假设。我们之所以相信它只是基于谦虚:因为如果宇宙只是在我们这儿
看起来各向同性,而在宇宙的其他地方并非如此,则是非常奇异的!在弗利德曼模型中,
所有的星系都直接相互离开。这种情形很像一个画上好多斑点的气球被逐渐吹胀。当气
球膨胀时,任何两个斑点之间的距离加大,但是没有一个斑点可认为是膨胀的中心。并
且斑点相离得越远,则它们互相离开得越快。类似地,在弗利德曼的模型中,任何两个
星系互相离开的速度和它们之间的距离成正比。所以它预言,星系的红移应与离开我们
的距离成正比,这正是哈勃所发现的。尽管他的模型的成功以及预言了哈勃的观测,但
是直到1935年,为了响应哈勃的宇宙的均匀膨胀的发现,美国物理学家哈瓦·罗伯逊和
英国数学家阿瑟·瓦尔克提出了类似的模型后,弗利德曼的工作在西方才被普遍知道。
虽然弗利德曼只找到一个模型,其实满足他的两个基本假设的共有三种模型。在第
一种模型(即弗利德曼找到的)中,宇宙膨胀得足够慢,以至于在不同星系之间的引力
使膨胀变慢下来,并最终使之停止。然后星系开始相互靠近,宇宙开始收缩。图3。2表示
随时间增加两个邻近的星系的距离的变化。刚开始时距离为零,接着它增长到最大值,
然后又减小到零;在第二类解中,宇宙膨胀得如此之快,以至于引力虽然能使之缓慢一
些,却永远不能使之停止。图3。3表示此模型中的邻近星系的距离随时间的变化。刚开始
时距离为零,最后星系以稳恒的速度相互离开;最后,还有第三类解,宇宙的膨胀快到
足以刚好避免坍缩。正如图3。4所示,星系的距离从零开始,然后永远增大。然而,虽然
星系分开的速度永远不会变为零,这速度却越变越慢。
第一类弗利德曼模型的奇异特点是,宇宙在空间上不是无限的,并且是没有边界的。
引力是如此之强,以至于空间被折弯而又绕回到自身,使之相当像地球的表面。如果一
个人在地球的表面上沿着一定的方向不停地旅行,他将永远不会遇到一个不可超越的障
碍或从边缘掉下去,而是最终走到他出发的那一点。第一类弗利德曼模型中的空间正与
此非常相像,只不过地球表面是二维的,而它是三维的罢了。第四维时间的范围也是有
限的,然而它像一根有两个端点或边界即开端和终端的线。以后我们会看到,当人们将
广义相对论和量子力学的测不准原理结合在一起时,就可能使空间和时间都成为有限的、
但却没有任何边缘或边界。
一个人绕宇宙一周最终可回到出发点的思想是科学幻想的好题材,但实际上它并没
有多大意义。因为可以指出,一个人还没来得及绕回一圈,宇宙已经坍缩到了零尺度。
你必须旅行得比光波还快,才能在宇宙终结之前绕回到你的出发点——而这是不允许的!
在第一类弗利德曼模型中,宇宙膨胀后又坍缩,空间如同地球表面那样,弯曲后又
折回到自己。在第二类永远膨胀的模型中,空间以另外的方式弯曲,如同一个马鞍面。
所以,在这种情形下空间是无限的。最后,在第三类刚好以临界速率膨胀的弗利德曼模
型中,空间是平坦的(所以也是无限的)。
但是究竟可用何种弗利德曼模型来描述我们的宇宙呢?宇宙最终会停止膨胀并开始
收缩或将永远膨胀吗?要回答这个问题,我们必须知道现在的宇宙膨胀速度和它现在的
平均密度。如果密度比一个由膨胀率决定的某临界值还小,则引力太弱不足于将膨胀停
住;如果密度比这临界值大,则引力会在未来的某一时刻将膨胀停止并使宇宙坍缩。
利用多普勒效应,可由测量星系离开我们的速度来确定现在的宇宙膨胀速度。这可
以非常精确地实现。然而,因为我们不是直接地测量星系的距离,所以它们的距离知道
得不是非常清楚。所有我们知道的是,宇宙在每10亿年里膨胀5%至10%。然而,我们对
现在宇宙的平均密度测量得更不准。我们如果将银河系和其他所有能看到的星系的恒星
的质量加起来,甚至是按对膨胀率的最低的估值而言,其质量总量比用以阻止膨胀的临
界值的1%还少。然而,在我们以及其他的星系里应该有大量的“暗物质”,那是我们不
能直接看到的,但由于它的引力对星系中恒星轨道的影响,我们知道它必定存在。况且
人们发现,大多数星系是成团的。类似地,由其对星系运动的效应,我们能推断出还有
更多的暗物质存在于这些成团的星系之间。将所有这些暗物质加在一起,我们仍只能获
得必须用以停止膨胀的密度的十分之一。然而,我们不能排除这样的可能性,可能还有
我们未能探测到的其他的物质形式几乎均匀地分布于整个宇宙,它仍可以使得宇宙的平
均密度达到停止膨胀所必要的临界值。所以,现在的证据暗示,宇宙可能会无限地膨胀。
但是,所有我们能真正了解的是,既然它已经膨胀了100亿年,即便如果宇宙还要坍缩,
则至少要再过这么久才有可能。这不应使我们过度忧虑——到那时候。除非我们到太阳
系以外开拓殖民地,人们早由于太阳的熄灭而死亡殆尽!
所有的弗利德曼解都具有一个特点,即在过去的某一时刻(约100到200亿年之前)
邻近星系之间的距离为零。在这被我们称之为大爆炸的那一时刻,宇宙的密度和空间—
—时间曲率都是无穷大。因为数学不能处理无穷大的数,这表明广义相对论(弗利德曼
解以此为基础)预言,在宇宙中存在一点,在该处理论自身失效。这正是数学中称为奇
点的一个例子。事实上,我们所有的科学理论都是基于空间——时间是光滑的和几乎平
坦的基础上被表述的,所以它们在空间——时间曲率为无穷大的大爆炸奇点处失效。这
表明,即使在大爆炸前存在事件,人们也不可能用之去确定之后所要发生的事件,因为
可预见性在大爆炸处失效了。正是这样,与之相应的,如果我们只知道在大爆炸后发生
的事件,我们也不能确定在这之前发生的事件。就我们而言,发生于大爆炸之前的事件
不能有后果,所以并不构成我们宇宙的科学模型的一部分。因此,我们应将它们从我们
模型中割除掉,并宣称时间是从大爆炸开始的。
很多人不喜欢时间有个开端的观念,可能是因为它略带有神的干涉的味道。(另一
方面,天主教抓住了大爆炸模型,并在1951年正式宣布,它和《圣经》相一致。)所以,
许多人企图避免大爆炸曾经存在过的这一结论。所谓的稳态理论得到过最广泛的支持。
这是由两个纳粹占领的奥地利来的难民,赫曼·邦迪和托马斯·高尔德,以及一个战时
和他们一道从事研制雷达的英国人,弗雷得·霍伊尔于1948年共同提出的。其想法是,
当星系互相离开时,在它们中的间隙由正在连续产生的新物质不断地形成新的星系。因
此,在空间的所有地方以及在所有的时间,宇宙看起来大致是相同的。稳态理论需要对
广义相对论进行修正,使之允许物质的。连续生成,但是其产生率是如此之低(大约每
立方公里每年才产生一个粒子),以至于不与实验相冲突。在第一章 叙述的意义上,
这是一个好的科学理论:它非常简单,并做出确定的预言让观察检验。其中一个预言是,
我们在宇宙的任何时候任何地方看给定的空间体积内星系或类似物体的数目必须一样。
本世纪50年代晚期和60年代早期,由马丁·赖尔(他战时也和邦迪·高尔德以及霍伊尔
共事作雷达研究)领导的一个天文学家小组在剑桥对从外空间来的射电源进行了普查。
这个小组指出,这些射电源的大部分是位于我们星系之外(它们之中的许多确实可被认
证与其他星系相关),并且存在的弱源比强源多得多。他们将弱源解释为更遥远的源,
强源为较近的源。结果发现,单位空间体积内普通的源在近处比远处稀少。这可能表明,
我们处于宇宙的一个巨大区域的中心,在这儿的源比其他地方稀少。另外的一个解释是,
宇宙在射电开始发出的过去的那一时刻具有比我们现有的更密集的源。任何一种解释都
和稳态理论相矛盾。况且,1965年彭齐亚斯和威尔逊的微波背景辐射的发现又指出,宇
宙在过去必须密集得多。因此稳态理论必须被抛弃。
1963年,两位苏联科学家欧格尼·利弗席兹和伊萨克·哈拉尼可夫做了另一个尝试,
设法避免存在大爆炸并因此引起时间起点的问题。他们提出;大爆炸可能只是弗利德曼
模型的特性,这个模型毕竟只是真实宇宙的近似。也许,所有大体类似实在宇宙的模型
中,只有弗利德曼模型包含大爆炸奇点。在弗利德曼模型中,所有星系都是直接互相离
开——所以一点不奇怪,在过去的某一时刻它们必须在同一处。然而,在实际的宇宙中,
星系不仅仅是直接互相离开——它也有一点横向速度。所以,在现实中它们从来没必要
在同一处,只不过非常靠近而已。也许,现在膨胀着的宇宙不是大爆炸奇点的结果,而
是从早期的收缩相而来的;当宇宙坍缩时,其中的粒子可以不都碰撞,而是互相离得很
近穿过然后又离开,产生了现在的宇宙膨胀。何以得知这实际的宇宙是否从大爆炸开始
的呢?利弗席兹和哈拉尼可夫研究的模型大体和弗利德曼模型相像,但是考虑了实际宇
宙中的星系的不规则性和杂乱速度。他们指出,即使星系不再总是直接互相离开,这样
的模型也可从一个大爆炸开始。但是他们宣称,这只可能发生在一定的例外的模型中,
星系在这儿以正确的方式运动。他们论证道;似乎没有大爆炸奇点的类弗利德曼模型比
有此奇点的模型多无限多倍,所以我们的结论应该是,实际中没有