九味书屋 > 文学经管电子书 > 时间简史全集 >

第4部分

时间简史全集-第4部分

小说: 时间简史全集 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



物体,例如两个不同的铅锤,它们则以同样速度下降。
    伽利略的测量被牛顿用来作为他的运动定律的基础。在伽利略的实验中,当物体从
斜坡上滚下时,它一直受到不变的外力(它的重量),其效应是它被恒定地加速。这表
明,力的真正效应总是改变物体的速度,而不是像原先想像的那样,仅仅使之运动。同
时,它还意味着,只要一个物体没有受到外力,它就会以同样的速度保持直线运动。这
个思想是第一次被牛顿在1687年出版的《数学原理》一书中明白地叙述出来,并被称为
牛顿第一定律。物体受力时发生的现象则由牛顿第二定律所给出:物体被加速或改变其
速度时,其改变率与所受外力成比例。(例如,如果力加倍,则加速度也将加倍。)物
体的质量(或物质的量)越大,则加速度越小,(以同样的力作用于具有两倍质量的物
体则只产生一半的加速度。)小汽车可提供一个熟知的例子,发动机的功率越大,则加
速度越大,但是小汽车越重,则对同样的发动机加速度越小。
    除了他的运动定律,牛顿还发现了描述引力的定律:任何两个物体都相互吸引,其
引力大小与每个物体的质量成正比。这样,如果其中一个物体(例如A)的质量加倍,则
两个物体之间的引力加倍。这是你能预料得到的,因为新的物体A可看成两个具有原先质
量的物体,每一个用原先的力来吸引物体B,所以A和B之间的总力加倍。其中一个物体质
量大到原先的2倍,另一物体大到3倍,则引力就大到6倍。现在人们可以看到,何以落体
总以同样的速率下降:具有2倍重量的物体受到将其拉下的2倍的引力,但它的质量也大
到两倍。按照牛顿第二定律,这两个效应刚好互相抵消,所以在所有情形下加速度是同
样的。
    牛顿引力定律还告诉我们,物体之间的距离越远,则引力越小。牛顿引力定律讲,
一个恒星的引力只是一个类似恒星在距离小一半时的引力的4分之1。这个定律极其精确
地预言了地球、月亮和其他行星的轨道。如果这定律变为恒星的万有引力随距离减小得
比这还快,则行星轨道不再是椭圆的,它们就会以螺旋线的形状盘旋到太阳上去。如果
引力减小得更慢,则远处恒星的引力将会超过地球的引力。
    亚里士多德和伽利略——牛顿观念的巨大差别在于,亚里士多德相信存在一个优越
的静止状态,任何没有受到外力和冲击的物体都采取这种状态。特别是他以为地球是静
止的。但是从牛顿定律引出,并不存在一个静止的唯一标准。人们可以讲,物体A静止而
物体B以不变的速度相对于物体A运动,或物体B静止而物体A运动,这两种讲法是等价的。
例如,我们暂时将地球的自转和它绕太阳的公转置之一旁,则可以讲地球是静止的,一
列火车以每小时90英哩的速度向北前进,或火车是静止的,而地球以每小时90英哩的速
度向南运动。如果一个人在火车上以运动的物体做实验,所有牛顿定律都成立。例如,
在火车上打乓乒球,将会发现,正如在铁轨边上一张台桌上一样,乓乒球服从牛顿定律,
所以无法得知是火车还是地球在运动。
    缺乏静止的绝对的标准表明,人们不能决定在不同时间发生的两个事件是否发生在
空间的同一位置。例如,假定在火车上我们的乓乒球直上直下地弹跳,在一秒钟前后两
次撞到桌面上的同一处。在铁轨上的人来看,这两次弹跳发生在大约相距100米的不同的
位置,因为在这两回弹跳的间隔时间里,火车已在铁轨上走了这么远。这样,绝对静止
的不存在意味着,不能像亚里士多德相信的那样,给事件指定一个绝对的空间的位置。
事件的位置以及它们之间的距离对于在火车上和铁轨上的人来讲是不同的,所以没有理
由以为一个人的处境比他人更优越。
    牛顿对绝对位置或被称为绝对空间的不存在感到非常忧虑,因为这和他的绝对上帝
的观念不一致。事实上,即使绝对空间的不存在被隐含在他的定律中,他也拒绝接受。
因为这个非理性的信仰,他受到许多人的严厉批评,最有名的是贝克莱主教,他是一个
相信所有的物质实体、空间和时间都是虚妄的哲学家。当人们将贝克莱的见解告诉著名
的约翰逊博士时,他用脚尖踢到一块大石头上,并大声地说:“我要这样驳斥它!”
    亚里士多德和牛顿都相信绝对时间。也就是说,他们相信人们可以毫不含糊地测量
两个事件之间的时间间隔,只要用好的钟,不管谁去测量,这个时间都是一样的。时间
相对于空间是完全分开并独立的。这就是大部份人当作常识的观点。然而,我们必须改
变这种关于空间和时间的观念。虽然这种显而易见的常识可以很好地对付运动甚慢的诸
如苹果、行星的问题,但在处理以光速或接近光速运动的物体时却根本无效。
    光以有限但非常高的速度传播的这一事实,由丹麦的天文学家欧尔·克里斯琴森·
罗麦于1676年第一次发现。他观察到,木星的月亮不是以等时间间隔从木星背后出来,
不像如果月亮以不变速度绕木星运动时人们所预料的那样。当地球和木星都绕着太阳公
转时,它们之间的距离在变化着。罗麦注意到我们离木星越’远则木星的月食出现得越
晚。他的论点是,因为当我们离开更远时,光从木星月亮那儿要花更长的时间才能达到
我们这儿。然而,他测量到的木星到地球的距离变化不是非常准确,所以他的光速的数
值为每秒14    英哩,而现在的值为每秒186000英哩。尽管如此,罗麦不仅证明了光以
有限速度运动,并且测量了光速,他的成就是卓越的——要知道,这一切都是在牛顿发
表《数学原理》之前11年进行的。
    直到1865年,当英国的物理学家詹姆士·马克斯韦成功地将当时用以描述电力和磁
力的部分理论统一起来以后,才有了光传播的真正的理论。马克斯韦方程预言,在合并
的电磁场中可以存在波动的微扰,它们以固定的速度,正如池塘水面上的涟漪那样运动。
如果这些波的波长(两个波峰之间的距离)为1米或更长一些,这就是我们所谓的无线电
波。更短波长的波被称做微波(几个厘米)或红外线(长于万分之一厘米)。可见光的
波长在百万分之40到百万分之80厘米之间。更短的波长被称为紫外线、X射线和伽玛射线。
    马克斯韦理论预言,无线电波或光波应以某一固定的速度运动。但是牛顿理论已经
摆脱了绝对静止的观念,所以如果假定光是以固定的速度传播,人们必须说清这固定的
速度是相对于何物来测量的。这样人们提出,甚至在“真空”中也存在着一种无所不在
的称为“以太”的物体。正如声波在空气中一样,光波应该通过这以太传播,所以光速
应是相对于以太而言。相对于以太运动的不同观察者,应看到光以不同的速度冲他们而
来,但是光对以太的速度是不变的。特别是当地球穿过以太绕太阳公转时,在地球通过
以太运动的方向测量的光速(当我们对光源运动时)应该大于在与运动垂直方向测量的
光速(当我们不对光源运动时)。1887年,阿尔贝特·麦克尔逊(后来成为美国第一个
物理诺贝尔奖获得者)和爱德华·莫雷在克里夫兰的卡思应用科学学校进行了非常仔细
的实验。他们将在地球运动方向以及垂直于此方向的光速进行比较,使他们大为惊奇的
是,他们发现这两个光速完全一样!
    在1887年到1905年之间,人们曾经好几次企图去解释麦克尔逊——莫雷实验。最著
名者为荷兰物理学家亨得利克·罗洛兹,他是依据相对于以太运动的物体的收缩和钟变
慢的机制。然而,一位迄至当时还不知名的瑞士专利局的职员阿尔贝特·爱因斯坦,在
1905年的一篇著名的论文中指出,只要人们愿意抛弃绝对时间的观念的话,整个以太的
观念则是多余的。几个星期之后,一位法国最重要的数学家亨利·彭加勒也提出类似的
观点。爱因斯坦的论证比彭加勒的论证更接近物理,因为后者将此考虑为数学问题。通
常这个新理论是归功于爱因斯坦,但彭加勒的名字在其中起了重要的作用。
    这个被称之为相对论的基本假设是,不管观察者以任何速度作自由运动,相对于他
们而言,科学定律都应该是一样的。这对牛顿的运动定律当然是对的,但是现在这个观
念被扩展到包括马克斯韦理论和光速:不管观察者运动多快,他们应测量到一样的光速。
这简单的观念有一些非凡的结论。可能最著名者莫过于质量和能量的等价,这可用爱因
斯坦著名的方程E=mc^2来表达(这儿E是能量,m是质量,c是光速),以及没有任何东
西能运动得比光还快的定律。由于能量和质量的等价,物体由于它的运动所具的能量应
该加到它的质量上面去。换言之,要加速它将变得更为困难。这个效应只有当物体以接
近于光速的速度运动时才有实际的意义。例如,以10%光速运动的物体的质量只比原先
增加了0。5%,而以90%光速运动的物体,其质量变得比正常质量的2倍还多。当一个物
体接近光速时,它的质量上升得越来越快,它需要越来越多的能量才能进一步加速上去。
实际上它永远不可能达到光速,因为那时质量会变成无限大,而由质量能量等价原理,
这就需要无限大的能量才能做到。由于这个原因,相对论限制任何正常的物体永远以低
于光速的速度运动。只有光或其他没有内禀质量的波才能以光速运动。
    相对论的一个同等卓越的成果是,它变革了我们对空间和时间的观念。在牛顿理论
中,如果有一光脉冲从一处发到另一处,(由于时间是绝对的)不同的观测者对这个过
程所花的时间不会有异议,但是他们不会在光走过的距离这一点上取得一致的意见(因
为空间不是绝对的)。由于光速等于这距离除以所花的时间,不同的观察者就测量到不
同的光速。另一方面,在相对论中,所有的观察者必须在光是以多快的速度运动上取得
一致意见。然而,他们在光走过多远的距离上不能取得一致意见。所以现在他们对光要
花多少时间上也不会取得一致意见。(无论如何,光所花的时间正是用光速——这一点
所有的观察者都是一致的——去除光所走的距离——这一点对他们来说是不一致的。)
总之,相对论终结了绝对时间的观念!这样,每个观察者都有以自己所携带的钟测量的
时间,而不同观察者携带的同样的钟的读数不必要一致。



    图2。1时间用垂直坐标测量,离开观察者的距离用水平坐标测量。观察者在空间和时
间里的途径用左边的垂线表示。到事件去和从事件来的光线的途径用对角线表示。
    每个观察者都可以用雷达去发出光脉冲或无线电波来测定一个事件在何处何时发生。
脉冲的一部分由事件反射回来后,观察者可在他接收到回波时测量时间。事件的时间可
认为是发出脉冲和脉冲反射回来被接收的两个时刻的中点;而事件的距离可

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的