九味书屋 > 激情辣文电子书 > 博弈游戏 >

第35部分

博弈游戏-第35部分

小说: 博弈游戏 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



鸅不同意,则两人将什么都得不到。

  你也许要怀疑这种情况完全是虚构出来的,没有什么现实意义,其实并不如此。在现实中,这种情况有可能出现。比如,一个宾馆服务员捡到了100元,他想据为己有;可是另一个服务员看到了,于是威胁如果不分给他一部分,他就要向领班报告,在那种情况下,这笔钱就要上缴,谁也得不到。你可能又要说,这两个人的境界太低。需要再次申明,这里探讨的是理性(即“合理自私”)问题,而不是道德问题。

  A提方案时要猜测B的反应,A会这样想:根据“理性人”的假定,A无论提出什么方案给B——除了将所有100元留给自己而一点不给B这样极端的情况,B只有接受,因为B接受了还有所得,而不接受将一无所获——当然此时A也将一无所获。此时理性的A的方案可以是:留给B一点点比如1分钱,而将99。99元归为己有,即方案是:99。99:0。01。B接受了还会有0。01元,而不接受将什么也没有。

  这是根据理性人的假定的结果,而实际则不是这个结果。英国博弈论专家宾谟做了实验,发现提方案者倾向于提50:50,而接受者会倾向于:如果给他的少于30%他将拒绝,多于30%则不拒绝。这个博弈反映的是,“人是理性的”这样的假定在某些时候存在着与实际不符的情况。

  启示:大多数道德实际上有利己成分,或者从长远说,是“利人利己”的。某些自我牺牲的行为虽然存在着,但并不普遍,且不足以动摇人类的行为趋向。

  要买一张彩票吗

  理论的假定与实际不符的另外一个例子是“彩票问题”。

  我们说理性的人是力图使自己的效益最大,如果在信息不完全的情况下则是使自己的期望效益最大。但是这难以解释现实中人们购买彩票的现象。

  人们愿意掏少量的钱去买彩票,如福利彩票、体育彩票等,以博取高额的回报。在这样的过程中,人们自己的选择理性发挥不出来,而惟有靠运气。在这个博弈中,人们要在决定购买彩票还是不买彩票之间进行选择。根据理性人的假定,选择不买彩票是理性的,而选择买彩票是不理性的。

  因为彩票的命中率肯定低,并且命中率与命中所得相乘肯定低于购买的付出(如你花费2元买一张彩票,假定最高奖金是100万元,中奖概率是百万分之一,你其实已经亏了),因为彩票的发行者早已计算过了,他们通过发行彩票将获得高额回报,他们肯定赢。在这样的博弈中,彩票购买者是“不理性的”:他未使自己的期望效益最大。但在社会上有各种各样的彩票存在,也有大量的人来购买。可见,理性人的假定是不符合实际情况的。

  当然我们可以给出这样一个解释:现实中人的理性的计算能力往往用在不符合实际情况的“高效用”同题上,而在“低效用”问题上,理性往往失去作用,对于人,存在着“低效用区的决策陷阱”。在购买彩票问题上,付出少量的金钱给购买者带来的损失不大,损失的效用几乎为零,而所能命中的期望也几乎是零,这时候,影响人抉择的是非理性的因素。比如,考虑到如果自己运气好的话,可以获得高回报,这样可以给自己带来更大的效用,等等。彩票发行者正是利用人存在着“低效用区的决策陷阱”而寻求保证赚钱的获利途径。

  “旅行者困境”

  即使是二人同时决策,博弈论也为我们提供了警示世人别太“聪明”的例子:两个旅行者从一个以出产细瓷花瓶著名的地方旅行回来,他们都买了花瓶。提取行李的时候,发现花瓶被摔坏了。他们向航空公司索赔。航空公司知道花瓶的价格总在八九十元的价位浮动,但是不知道两位旅客买的时候的确切价格是多少。于是,航空公司请两位旅客在100元以内自己写下花瓶的价格。如果两人写的一样,航空公司将认为他们讲真话,于是按照他们写的数额赔偿;如果两人写的不一样,航空公司就论定写得低的旅客讲的是真话,并且原则上照这个低的价格赔偿,但是对讲真话的旅客奖励2元钱,对讲假话的旅客罚款2元。

  就为了获取最大赔偿而言,本来甲乙双方最好的策略,就是都写100元,这样两人都能够获赔100元。可是不,甲很聪明,他想:如果我少写l元变成99元,而乙会写100元,这样我将得到101元。何乐而不为?所以他准备写99元。可是乙更加聪明,他算计到甲要算计他写99元,“人不犯我,我不犯人,人若犯我,我必犯人”,他准备写98元。想不到甲还要更聪明一个层次,计算出乙要这样写98元来坑他,“来而不往非礼也”,他准备写97元……大家知道,下象棋的时候,不是说要多“看”几步吗,“看”得越远,胜算越大。你多看两步,我比你更强多看三步,你多看四步,我比你更老谋深算多看五步。在花瓶索赔的例子中,如果两个人都“彻底理性”,都能看透十几步甚至几十步上百步,那么上面那样“精明比赛”的结果,最后落到每个人都只写一两元的田地。事实上,在彻底理性的假设之下,这个博弈惟一的纳什均衡,是两人都写0。

  这就是哈佛大学巴罗教授提出的著名的“旅行者困境”。一方面,它有启示人们在为私利考虑的时候不要太“精明”,告诫人们精明不等于高明,太精明往往会坏事;但是另一方面,它对于理性行为假设的适用性提出了警告。

  有了这个假设,我们就可以按照这个明确的比较取舍标准来推理,但是推断出来的结论是否符合实际,依赖于应用“理性行为”假设的程度。如果你的论证像“旅行者困境”那样,假设当事人彻底理性,能够算计到十几步甚至几十步,那么你推论出的结果,未必符合现实。

  大家知道,理性行为假设是讨论消费者和企业这些经济主体人的行为的基本假设。所以经济学在理性行为假设之下得到的结论是否符合实际,还要进行另外的分析。在这个意义上,“旅行者困境”是所有博弈论学者甚至所有经济学者必须面对的困境。

  启示:一位富翁的狗在散步时跑丢了,于是他急匆匆地在电视台发了一则启事:有狗丢失,归还者付酬金1万元。并有小狗的一张彩照,充满大半个屏幕。一位乞丐看到广告后,第二天一大早就抱着狗准备去领酬金。当他经过一家大百货商场的墙体屏幕时,又看到了那则启事,不过赏金已变成3万元。乞丐又折回他的住处,把狗重新拴在那儿,在接下来的几天时间里,乞丐从没有离开过这只大屏幕,当酬金涨到使全城市民都感到惊讶时,乞丐返回他的住处,可是那只狗已经死了——在这个世界上,金钱一旦被作为某种筹码,就不会再买到任何东西。

  强盗分赃

  如果你对自己的头脑很有自信,来看看这个问题:有五个强盗抢得100枚金币,在如何分赃问题上争吵不休。于是他们决定:(1)抽签决定各人的号码(1,2,3,4,5);(2)由1号提出分配方案,然后5人表决,如果方案超过半数同意就被通过,否则他将被扔进大海喂鲨鱼;(3)1号死后,由2号提方案,4人表决,当且仅当超过半数同意时方案通过,否则2号同样被扔进大海;(4)依次类推,直到找到一个每个人都接受的方案(当然,如果只剩下5号,他当然接受一人独吞的结果)。

  假定每个强盗都是经济学假设的“理性人”,都能很理智地判断得失,作出选择。为了避免不必要的争执,我们还假定每个判决都能顺利执行。那么,如果你是第一个强盗,你该如何提出分配方案才能够使自己的收益最大化?

  据说,凡在20分钟内答出此题的人有望在美国赚取8万美元以上的年薪,还有人干脆说这其实就是微软员工的入门测试题。

  希望拿到年薪8万美元或者进入微软的大有人在,你可能也是其中之一,如果是这样,你不妨先停下来,花上20分钟,好好做做这道题。如果你没有这份耐心,就接着往下看。

  出乎意料的答案

  这道题十分复杂,很多人的答案都是错的。为了叙述方便,我们先公布答案,然后再做分析。

  这个严酷的规定给人的第一印象是:如果自己抽到了1号,那将是一件不幸的事。因为作为头一个提出方案的人,仅仅能活下来的机会都微乎其微。即使他自己一分不要,把钱全部送给另外4人,那些人可能也不赞同他的分配方案,那么他只有死路一条。

  如果你也这样想,那么答案会大大出乎你意料。许多人公认的标准答案是:1号强盗分给3号1枚金币,4号或5号强盗2枚,独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。

  只要你没被吓坏,你就可能站在这四人的角度分析:显然,5号是最不合作的,因为他没有被扔下海的风险,从直觉上说,每扔下去一个,潜在的对手就少一个;4号正好相反,他生存的机会完全取决于前面还有人活着,因此此人似乎值得争取;3号对前两个的命运完全不同情,他只需要4号支持就可以了;2号则需要3票才能活,那么,你……

  思路对头,但是太笼统了,不要忘了我们的假设前提:每个人都十足理性,都不可能犯逻辑错误。所以,你应该按照严格的逻辑思维去推想他们的决定。

  从哪儿开始呢?前面我们提过“向前展望,倒后推理”,推理过程应该是从后向前,因为越往后策略越容易看清。5号不用说了,他的策略最简单:巴不得把所有人都送去喂鲨鱼(但要注意:这并不意味着他要对每个人投反对票,他也要考虑其他人方案通过的情况)。来看4号:如果1~3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。

  3号知道这个策略,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为己有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票他的方案即可通过。

  不过,2号推知到3号的方案,就会提出(98,0,l,1)的方案,即放弃3号,而给予4号和5号各1枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。不过,2号的方案会被l号所洞悉,l号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号1枚金币,同时给4号或5号2枚金币。由于l号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投l号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入腰包。这无疑是1号能够获取最大收益的方案了!

  难以置信,是不是?难道上面的推理真是毫无破绽吗?

  应该说,还真有一个模糊不清之处:其实,除了无条件支持3号之外,4号还有一个策略(这是许多专家都没有考虑到的):那就是提出(0,100)的方案,让5号独吞金币,换取自己的活命。如果这个可能成立的话(不要忘了“完全理性”的假定,既然可以得到所有钱,5号其实并不必杀死4号),那么3号前面的策略就显然

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的